
1

Instruction Selection

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

0 Comp 412, Fall 2010

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

1

The Problem
Modern computers (still) have many ways to do anything
Consider register-to-register copy in ILOC
•  Obvious operation is i2i ri ⇒ rj
•  Many others exist

•  Human would ignore all of these
•  Algorithm must look at all of them & find low-cost encoding

—  Take context into account (busy functional unit?)

And ILOC is an overly-simplified case

addI ri,0 ⇒ rj subI ri,0 ⇒ rj lshiftI ri,0 ⇒ rj
multI ri,1 ⇒ rj divI ri,1 ⇒ rj rshiftI ri,0 ⇒ rj
orI ri,0 ⇒ rj xorI ri,0 ⇒ rj … and others …

Comp 412, Fall 2010

2

2

The Goal
Want to automate generation of instruction selectors

Machine description should also help with scheduling & allocation

Front End Back End Middle End

Infrastructure

Tables

Pattern
Matching

Engine

Back-end
Generator

Machine
description

Description-based
retargeting

Comp 412, Fall 2010

3

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

Our treewalk code generator (Lec. 22) ran quickly
How good was the code?

x

IDENT
<a,ARP,4>

IDENT
<b,ARP,8>

loadI 4 ⇒ r5
loadAO r0,r5 ⇒ r6
loadI 8 ⇒ r7
loadAO r0,r7 ⇒ r8
mult r6,r8 ⇒ r9

loadAI r0,4 ⇒ r5
loadAI r0,8 ⇒ r6
mult r5,r6 ⇒ r7

Tree Treewalk Code Desired Code

Comp 412, Fall 2010

3

4

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

Our treewalk code generator (Lec. 22) ran quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 ⇒ r5
loadAO r0,r5 ⇒ r6
loadI 2 ⇒ r7
mult r6,r7 ⇒ r8

loadAI r0,4 ⇒ r5
multI r5,2 ⇒ r7

Tree Treewalk Code Desired Code

Comp 412, Fall 2010

5

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

Our treewalk code generator (Lec. 22) ran quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 ⇒ r5
loadAO r0,r5 ⇒ r6
loadI 2 ⇒ r7
mult r6,r7 ⇒ r8

loadAI r0,4 ⇒ r5
multI r5,2 ⇒ r7

Tree Treewalk Code Desired Code

Must use info from both these
nodes. This is not a local problem.

Comp 412, Fall 2010

4

6

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

Our treewalk code generator (Lec. 22) ran quickly
How good was the code?

x

IDENT
<a,ARP,4>

NUMBER
<2>

loadI 4 ⇒ r5
loadAO r0,r5 ⇒ r6
loadI 2 ⇒ r7
mult r6,r7 ⇒ r8

loadAI r0,4 ⇒ r5
add r5,r5 ⇒ r7

Tree Treewalk Code Desired Code

Another possibility that might take less
time & energy — an algebraic identity

Comp 412, Fall 2010

7

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

Our treewalk code generator (Lec. 22) ran quickly
How good was the code?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G ⇒ r5
loadI 4 ⇒ r6
loadAO r5,r6 ⇒ r7
loadI @H ⇒ r7
loadI 4 ⇒ r8
loadAO r8,r9 ⇒ r10
mult r7,r10⇒ r11

loadI 4 ⇒ r5
loadAI r5,@G ⇒ r6
loadAI r5,@H ⇒ r7
mult r6,r7 ⇒ r8

Tree Treewalk Code Desired Code

Comp 412, Fall 2010

5

Comp 412, Fall 2010 8

The Big Picture
Need pattern matching techniques
•  Must produce good code (some metric for good)
•  Must run quickly

Our treewalk code generator met the second criteria (lec. 22)
How did it do on the first ?

x

IDENT
<c,@G,4>

IDENT
<d,@H,4>

loadI @G ⇒ r5
loadI 4 ⇒ r6
loadAO r5,r6 ⇒ r7
loadI @H ⇒ r7
loadI 4 ⇒ r8
loadAO r8,r9 ⇒ r10
mult r7,r10⇒ r11

loadI 4 ⇒ r5
loadAI r5,@G ⇒ r6
loadAI r5,@H ⇒ r7
mult r6,r7 ⇒ r8

Tree Treewalk Code Desired Code

Common offset
Another nonlocal problem

9

How do we perform this kind of matching ?
Tree-oriented IR suggests pattern matching on trees
•  Process takes tree-patterns as input, matcher as output
•  Each pattern maps to a target-machine instruction sequence
•  Use dynamic programming or bottom-up rewrite systems

Linear IR suggests using some sort of string matching
•  Process takes strings as input, matcher as output
•  Each string maps to a target-machine instruction sequence
•  Use text matching (Aho-Corasick) or peephole matching

In practice, both work well; matchers are quite different

Comp 412, Fall 2010

6

10

Peephole Matching
Basic idea
•  Compiler can discover local improvements locally

—  Look at a small set of adjacent operations
— Move a “peephole” over code & search for improvement

•  Classic example was store followed by load

storeAI r1 ⇒ r0,8
loadAI r0,8 ⇒ r15

storeAI r1 ⇒ r0,8
i2i r1 ⇒ r15

Original code Improved code

Comp 412, Fall 2010

11

Peephole Matching
Basic idea
•  Compiler can discover local improvements locally

—  Look at a small set of adjacent operations
— Move a “peephole” over code & search for improvement

•  Classic example was store followed by load
•  Simple algebraic identities

addI r2,0 ⇒ r7
mult r4,r7 ⇒ r10

mult r4,r2 ⇒ r10

Original code Improved code

multI r5,2 ⇒ r7 add r2,r2 ⇒ r7

See Table on p 401 of EaC (§8.3) Comp 412, Fall 2010

7

12

Peephole Matching
Basic idea
•  Compiler can discover local improvements locally

—  Look at a small set of adjacent operations
— Move a “peephole” over code & search for improvement

•  Classic example was store followed by load
•  Simple algebraic identities
•  Jump to a jump

 jumpI → L10
L10: jumpI → L11

L10: jumpI → L11

Original code Improved code

Must be within the window Comp 412, Fall 2010

