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Note by Baris Aktemur:  
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412 
at Rice. 
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The Problem 
Modern computers (still) have many ways to do anything 
Consider register-to-register copy in ILOC 
•  Obvious operation is  i2i ri ⇒ rj 
•  Many others exist 

 
•  Human would ignore all of these 
•  Algorithm must look at all of them & find low-cost encoding 

—  Take context into account                          (busy functional unit?) 

And ILOC is an overly-simplified case 

addI  ri,0 ⇒ rj subI ri,0 ⇒ rj lshiftI ri,0 ⇒ rj
multI ri,1 ⇒ rj divI ri,1 ⇒ rj rshiftI ri,0 ⇒ rj
orI   ri,0 ⇒ rj xorI ri,0 ⇒ rj … and others …
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The Goal 
Want to automate generation of instruction selectors 

 
 
 

Machine description should also help with scheduling & allocation 

Front End Back End Middle  End 

Infrastructure  

Tables  

Pattern 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

Our treewalk code generator (Lec. 22) ran quickly 
How good was the code?  

x
 
 

IDENT 
<a,ARP,4> 

IDENT 
<b,ARP,8> 

loadI  4     ⇒ r5 
loadAO  r0,r5 ⇒ r6 
loadI  8     ⇒ r7 
loadAO  r0,r7 ⇒ r8 
mult  r6,r8 ⇒ r9 

loadAI  r0,4  ⇒ r5 
loadAI  r0,8  ⇒ r6 
mult  r5,r6 ⇒ r7 

Tree Treewalk Code Desired Code 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

Our treewalk code generator (Lec. 22) ran quickly 
How good was the code? 

x
 
 

IDENT 
<a,ARP,4> 

NUMBER 
<2> 

loadI  4     ⇒ r5 
loadAO  r0,r5 ⇒ r6 
loadI  2     ⇒ r7 
mult  r6,r7 ⇒ r8 

loadAI  r0,4  ⇒ r5 
multI  r5,2 ⇒ r7 

Tree Treewalk Code Desired Code 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

Our treewalk code generator (Lec. 22) ran quickly 
How good was the code? 

x
 
 

IDENT 
<a,ARP,4> 

NUMBER 
<2> 

loadI  4     ⇒ r5 
loadAO  r0,r5 ⇒ r6 
loadI  2     ⇒ r7 
mult  r6,r7 ⇒ r8 

loadAI  r0,4  ⇒ r5 
multI  r5,2 ⇒ r7 

Tree Treewalk Code Desired Code 

Must use info from both these 
nodes. This is not a local problem. 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

Our treewalk code generator (Lec. 22) ran quickly 
How good was the code? 

x
 
 

IDENT 
<a,ARP,4> 

NUMBER 
<2> 

loadI  4     ⇒ r5 
loadAO  r0,r5 ⇒ r6 
loadI  2     ⇒ r7 
mult  r6,r7 ⇒ r8 

loadAI  r0,4  ⇒ r5 
add  r5,r5 ⇒ r7 

Tree Treewalk Code Desired Code 

Another possibility that might take less 
time & energy — an algebraic identity 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

Our treewalk code generator (Lec. 22) ran quickly 
How good was the code? 

x
 
 

IDENT 
<c,@G,4> 

IDENT 
<d,@H,4> 

loadI  @G  ⇒ r5 
loadI  4     ⇒ r6 
loadAO  r5,r6 ⇒ r7 
loadI  @H  ⇒ r7 
loadI  4     ⇒ r8 
loadAO  r8,r9 ⇒ r10 
mult  r7,r10⇒ r11 

loadI  4           ⇒ r5 
loadAI  r5,@G ⇒ r6 
loadAI  r5,@H ⇒ r7  
mult  r6,r7   ⇒ r8 

Tree Treewalk Code Desired Code 
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The Big Picture 
Need pattern matching techniques  
•  Must produce good code                        (some metric for good ) 
•  Must run quickly 

Our treewalk code generator met the second criteria   (lec. 22) 
How did it do on the first ? 

x
 
 

IDENT 
<c,@G,4> 

IDENT 
<d,@H,4> 

loadI  @G  ⇒ r5 
loadI  4     ⇒ r6 
loadAO  r5,r6 ⇒ r7 
loadI  @H  ⇒ r7 
loadI  4     ⇒ r8 
loadAO  r8,r9 ⇒ r10 
mult  r7,r10⇒ r11 

loadI  4           ⇒ r5 
loadAI  r5,@G ⇒ r6 
loadAI  r5,@H ⇒ r7  
mult  r6,r7   ⇒ r8 

Tree Treewalk Code Desired Code 

Common offset 
Another nonlocal problem 
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How do we perform this kind of matching ? 
Tree-oriented IR suggests pattern matching on trees 
•  Process takes tree-patterns as input, matcher as output 
•  Each pattern maps to a target-machine instruction sequence 
•  Use dynamic programming or bottom-up rewrite systems 

Linear IR suggests using some sort of string matching 
•  Process takes strings as input, matcher as output 
•  Each string maps to a target-machine instruction sequence 
•  Use text matching (Aho-Corasick) or peephole matching 
 
In practice, both work well; matchers are quite different 

Comp 412, Fall 2010 



6 

10 

Peephole Matching 
Basic idea 
•  Compiler can discover local improvements locally 

—  Look at a small set of adjacent operations  
— Move a “peephole” over code & search for improvement 

•  Classic example was store followed by load 

storeAI r1       ⇒ r0,8 
loadAI   r0,8 ⇒ r15 

storeAI r1    ⇒ r0,8 
i2i   r1  ⇒ r15 

Original code Improved code 
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Peephole Matching 
Basic idea 
•  Compiler can discover local improvements locally 

—  Look at a small set of adjacent operations  
— Move a “peephole” over code & search for improvement 

•  Classic example was store followed by load 
•  Simple algebraic identities 

addI      r2,0   ⇒ r7 
mult       r4,r7 ⇒ r10 

mult    r4,r2  ⇒ r10 

Original code Improved code 

multI     r5,2 ⇒ r7 add     r2,r2   ⇒ r7 

See Table on p 401 of EaC (§8.3) Comp 412, Fall 2010 
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Peephole Matching 
Basic idea 
•  Compiler can discover local improvements locally 

—  Look at a small set of adjacent operations  
— Move a “peephole” over code & search for improvement 

•  Classic example was store followed by load 
•  Simple algebraic identities 
•  Jump to a jump 

       jumpI    → L10 
L10:  jumpI    → L11 

L10:  jumpI   → L11 

Original code Improved code 

Must be within the window Comp 412, Fall 2010 


